Scroll untuk baca artikel
Example 325x300
PenelitianPerkuliahan

Menentukan Penerimaan Hipotesis

×

Menentukan Penerimaan Hipotesis

Sebarkan artikel ini
Biasanya pada naskah skripsi atau tesis yang menggunakan analisis linear regresi berganda akan mempunyai hipotesis parsial (diuji dengan uji t) dan hipotesis simultan (diuji dengan uji F). Fenomena tersebut seolah-olah sudah latah dilakukan oleh mahasiswa dan juga disetujui oleh dosen pembimbing, yang sangat mungkin bukan berasal dari ilmu statistik.
 
Perumusan hipotesis parsial didasari oleh dasar teori yang kuat dan dapat dengan mudah dilakukan oleh mahasiswa dengan bantuan dosen, karena dosen memang sangat menguasai tentang hal itu. Akan tetapi, sebenarnya hipotesis simultan sering kali didasari oleh teori yang seolah-olah dipaksakan. Sebenarnya uji F adalah untuk melihat kelayakan modal saja. Jika uji F tidak signifikan, maka tidak disarankan untuk melakukan uji t atau uji parsial. Jadi hipotesis simultan sebenarnya tidak selalu harus dirumuskan dalam suatu penelitian. Toh dasar teorinya juga sangat lemah.
 
Penentuan penerimaan hipotesis dengan uji t dapat dilakukan berdasarkan tabel t. Nilai t hitung hasil regresi dibandingkan dengan nilai t pada tabel. Jika t hitung > t tabel maka berarti terdapat pengaruh yang signifikan secara parsial, dan sebaliknya jika t hitung < t tabel maka tidak terdapat pengaruh yang signifikan secara parsial. Hal tersebut juga berlaku untuk F hitung. Cara melihat nilai t tabel dan F tabel sudah banyak dibahas pada berbagai buku statistik. Misalnya untuk jumlah sampel 100 maka nilai t tabel untuk signifikansi 5% adalah dengan melihat nilai t dengan degree of freedom sebesar N – 2 = 100 – 2 = 98 untuk hipotesis dua arah. Nilai t dilihat pada kolom signifikansi : 2 = 5% : 2 = 0,025. Jika pengujian satu arah, maka df adalah 100 – 1 = 99 dan dilihat pada kolom 5%.
 
Untuk uji F, maka df dihitung dengan N – k – 1 dengan k adalah jumlah variabel bebas. Anda jangan bertanya, bagaimana kalau uji satu arah dan dua arah pada uji F. Uji F tidak mengenal arah, jadi ya pasti satu arah. Logika uji dua arah, adalah terdapat pengaruh antara variabel bebas terhadap variabel terikat, dan uji satu arah adalah terdapat pengaruh negatif/positif antara variabel bebas antara variabel bebas terhadap variabel terikat.

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

Situs ini menggunakan Akismet untuk mengurangi spam. Pelajari bagaimana data komentar Anda diproses.