Data Warehouse

Diposting pada

Data warehouse adalah data-data yang beorientasi subjek, terintegrasi, memiliki dimensi waktu, serta merupakan koleksi tetap (non-volatile), yang digunakan dalam mendukung proses pengambilan keputusan. Sedangkan data mining muncul setelah banyak dari pemilik data baik perorangan maupun organisasi mengalami penumpukan data yang telah terkumpul selama beberapa tahun, misalnya data pembelian, data penjualan, data nasabah, data transaksi, email dan sebagainya. Kemudian muncul pertanyaan dari pemilik data tersebut, apa yang harus dilakukan terhadap tumpukan data tersebut.

Data warehouse didesain untuk kita bisa melakukan query secara cepat. Informasi diturunkan dari data lain, dilakukan rolling up untuk dijadikan ringkasan, dilakukan operasi drilling down untuk mendapatkan informasi lebih detail, atau melihat pola yang menarik atau melihat trend (kecenderungan).

Karakteristik Data Warehouse

Subject Oriented (Berorientasi subject).Data warehouse berorientasi subject artinya data warehouse didesain untuk menganalisa data berdasarkan subject-subject tertentu dalam organisasi,bukan pada proses atau fungsi aplikasi tertentu

Integrated (Terintegrasi). Data Warehouse dapat menyimpan data-data yang berasal dari sumber-sumber yang terpisah kedalam suatu format yang konsisten dan saling terintegrasi satu dengan lainnya. Dengan demikian data tidak bisa dipecah-pecah karena data yang ada merupakan suatu kesatuan yang menunjang keseluruhan konsep data warehouse itu sendiri.

Time-variant (Rentang Waktu). Seluruh data pada data warehouse dapat dikatakan akurat atau valid pada rentang waktu tertentu

Baca Juga:   Hierarki Database

Non-Volatile. Karakteristik keempat dari data warehouse adalah non-volatile,maksudnya data pada data warehouse tidak di-update secara real time tetapi di refresh dari sistem operasional secara reguler. Data yang baru selalu  ditambahkan sebagai suplemen bagi database itu sendiri dari pada sebagai sebuah perubahan. Database tersebut secara kontinyu menyerap data baru ini, kemudian secara incremental disatukan dengan data sebelumnya.

Demikian artikel tentang Data Werehouse, semoga bermanfaat dan jika artikel ini dirasa bermanfaat silahkan di share. Terima kasih

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

This site uses Akismet to reduce spam. Learn how your comment data is processed.